https://nova.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Ferroelasticity in a metal-organic framework perovskite; towards a new class of multiferroics https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:19734 P2₁∣n, and a further transition associated with antiferromagnetic ordering at ⁓8.5 K. The main structural changes, through the phase transition, are orientational ordering of the azetidium groups and associated changes in hydrogen bonding. In marked contrast to conventional improper ferroelastic oxide perovskites, the driving mechanism is associated with the X-point of the cubic Brillouin zone rather than being driven by R- and M-point octahedral tilting. The total ferroelastic shear strain of up to ⁓5% is substantially greater than found for typical oxide perovskites, and highlights the potential of the flexible framework to undergo large relaxations in response to local structural changes. Measurements of elastic and anelastic properties by resonant ultrasound spectroscopy show some of the characteristic features of ferroelastic materials. In particular, acoustic dissipation below the transition point can be understood in terms of mobility of twin walls under the influence of external stress with relaxation times on the order of ⁓10⁻⁷s. Elastic softening as the transition is approached from above is interpreted in terms of coupling between acoustic modes and dynamic local ordering of the azetidium groups. Subsequent stiffening with further temperature reduction is interpreted in terms of classical strain–order parameter coupling at an improper ferroelastic transition which is close to being tricritical. By way of contrast, there are no overt changes in elastic or anelastic properties near 9 K, implying that any coupling of the antiferromagnetic order parameter with strain is weak or negligible.]]> Sat 24 Mar 2018 07:53:46 AEDT ]]> Elastic and anelastic relaxations accompanying magnetic ordering and spin-flop transitions in hematite, Fe2O3 https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:19730 TN = 946 ± 1 K is an example of a multiferroic transition which has both ferromagnetic (from canting of antiferromagnetically ordered spin moments) and ferroelastic (rhombohedral → monoclinic) character. By analogy with the improper ferroelastic transition in Pb₃(PO₄)₂, W and W' ferroelastic twin walls which are also 60° and 120° magnetic domain walls should develop. These have been tentatively identified from microstructures reported in the literature. The very low attenuation in the stability field of the C2/c structure in the polycrystalline sample used in the present study, in comparison with the strong acoustic dissipation reported for single crystal samples, implies, however, that the individual grains each consist of a single ferroelastic domain or that the twin walls are strongly pinned by grain boundaries. This absence of attenuation allows an intrinsic loss mechanism associated with the transition point to be seen and interpreted in terms of local coupling of shear strains with fluctuations which have relaxation times in the vicinity of ~10⁻⁸s. The first order [formula could not be replicated] (Morin) transition occurs through a temperature interval of coexisting phases but the absence of an acoustic loss peak suggests that the relaxation time for interface motion is short in comparison with the time scale of the applied stress (at ~0.1–1 MHz). Below the Morin transition a pattern of attenuation which resembles that seen below ferroelastic transitions has been found, even though the ideal low temperature structure cannot contain ferroelastic twins. This loss behavior is tentatively ascribed to the presence of local ferromagnetically ordered defect regions which are coupled locally to shear strains.]]> Sat 24 Mar 2018 07:53:45 AEDT ]]> Elastic properties and acoustic dissipation associated with a disorder-order ferroelectric transition in a metal-organic framework https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:26919 Sat 24 Mar 2018 07:23:34 AEDT ]]>